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IGM Intermediate geomaterial (a category that includes caliche) 
LVV Las Vegas Valley 
N Blow count 
N1,60 Blow count corrected to 1 ton/ft2 overburden pressure and also hammer efficiency 
N60 Blow count corrected for hammer efficiency 
PMT Pressuremeter test 
SPT Standard penetration test 
su Undrained shear strength 
VS Shear wave velocity 
 Angle of internal friction 
v’ Vertical effective stress 
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INTRODUCTION 
The project addresses drilled shaft foundation design for Nevada, especially for the population 
center of Las Vegas Valley. Specifically, we address overconservatism due to challenges in 
characterizing deformability and strength of dense, hard-to-sample sediments such as gravel, 
sand and mixed materials; and carbonate-cemented sediments of all types (which are identified 
as caliche when cementation is heavy). Sampling is a problem for these materials because of 
disturbance during collection (in cases of low-cohesion sediment or weak, brittle cement) or high 
costs of coring (caliche). Blow counts (N) from a standard penetration test (SPT; ASTM D1586) 
are not informative in caliche once the sampler meets refusal. 
 
Direct, in situ measurements of stiffness and shear strength (shear stress at failure, f), 
particularly using the pressuremeter test (PMT), can help reduce overconservatism in design. 
However, these would not be so effective in very stiff sediments and especially caliche. And 
questions have arisen as to representativeness / interpretation of results of such a localized test in 
our strongly heterogeneous sediments <ref>. Further, considerations for time and dollars limit 
use of in situ tests of strength / stiffness. Thus, foundation designers must make best use of those 
relevant datasets that are easiest and most economical to capture. 
 
To accompany PMT and laboratory strength / stiffness tests conducted on some readily sampled 
soils, correlations might be developed that relate shear strength or stiffness with readily 
measured in situ parameters. For weaker soils, the correlation is logically with cone penetration 
resistance <ref>; however, the cone penetration test is rarely viable in southern Nevada because 
of the soils’ intermittent zones of high stiffness, particularly due to cementation. The next logical 
choice for correlations is N. This approach is widely used. In one of many examples, Coduto et 
al. (2011) present correlations of N with the angle of internal friction () of uncemented coarse-
grained soils and with the undrained shear strength (su) of fine-grained soils. For stronger 
materials for which the SPT meets refusal, shear wave velocity (VS) might be a valuable 
indicator. VS information might also improve robustness of correlations to shear strength in 
weaker soil types. 
 
 
BACKGROUND  
We understand that current practice for design of foundations for roadway structures is 
overconservative because strengths and deformabilities of strong but difficult-to-sample strata 
are underestimated. Site-specific evaluation of VS variation with depth might allow for more 
efficient (less overconservative) design. Techniques to determine in situ VS non-intrusively are 
becoming more sophisticated and results are more reliable (e.g., Nazarian, 2012). Vertical 
profiles and even vertical slices of VS can be back-analyzed from Rayleigh-type surface wave 
measurements, which, as the name implies, are gathered on the ground surface, averting the need 
to drill costly boreholes. (See example illustration in Figure 1.) Author Luke, working through 
UNLV’s Applied Geophysics Center, has extensive experience using surface wave methods to 
characterize the subsurface, to depths as great as several hundred meters, using both active 
sources (hammers, dropped weights, vibrators) and ambient vibrations (“passive sources”) (e.g., 
Luke et al. 2010, Calderón-Macías and Luke 2010, Jin et al. 2009, Casto et al. 2009, Luke and 
Liu 2008, Luke and Calderón-Macías 2007, Calderón-Macías and Luke 2007).  
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occurrence, and lateral extent of caliche lenses vary widely. This means that capacities of the 
caliche relative to both bearing and skin resistance must be quantified. (If a caliche layer is thin, 
then only its skin resistance is of interest.) We understand that past designs by NDOT were 
generally based on applying existing design recommendations for caliche. One well-documented 
case study is the pile load field test carried out by Kleinfelder at the Spaghetti Bowl (I-15/ US 95 
/I-515). In addition, the Pile Driving Analyzer (PDA) program has also been used. These studies 
have yielded upper limits for skin friction in the caliche layer; these are valuable starting points 
from which applicability of such recommendations, along with bearing capacity limits, to Las 
Vegas Valley soils can be investigated.  
 
 
RESEARCH  

The primary objective of the research was to collect in situ data (N and VS) that can be directly 
paired with laboratory su data to generate one or more correlations (N and/or VS to su). Emphasis 
is on Nevada soils with particular focus on cemented soils. Data were to be collected from 
NDOT records, published literature and new field testing. Resulting correlation(s) would be 
applied to address impact upon expectations for vertical static pile/shaft capacity. 
 
The research program was organized into the following tasks. The task descriptions are copied 
verbatim from the project proposal. With each description is a brief statement of how the work 
followed or deviated from the plan. 
 
Task 1: Planning and coordination: Communicate with NDOT personnel to coordinate plans, 

learn of existing relevant NDOT datasets, and discuss field testing opportunities. This task 
continues throughout the project. Emphasis is on lessons learned from past field testing. We 
look to develop correlations with special emphasis upon those sites where field pile load tests 
have been undertaken. No significant deviation. Communication lines remained open 
throughout the project. Two in-person meetings were held at NDOT offices in Carson City. 
The researchers worked in tandem with NDOT personnel (Bafghi, Lawrence) on field testing 
and analysis of results; the team co-authored a conference paper. 

 
Task 2: Literature review: Using available Nevada-specific data and other relevant data, compile 

database of complementary data pairs or triads: su, N and VS. In particular, new VS profiles 
obtained from the pile load field test sites will be scrutinized to establish the correlations that 
are required for pile design calculations. No significant deviation. NDOT personnel provided 
some key literature and data (Bafghi, Lawrence). 

 
Task 3: Field campaign: At locations specified by NDOT, collect intrusive (e.g., downhole, 

crosshole, in-hole) compression and VS data, and surface-based Rayleigh wave data using 
active and also passive sources. NDOT to provide lithologic logs, N and laboratory shear 
strength test results. NDOT to core representative cemented sections for transmittal to 
research team for laboratory characterization of shear strength and VS. Field tests will be 
conducted at new/additional locations in order to contribute to the database of parameters 
that will dictate the correlation. Such an undertaking is designed to improve the applicability 
of the correlations and also to establish the range for the variables that dictate the 
correlations. Testing was conducted at one location only, the US 95/CC 215 interchange. No 
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heavily cemented sediments suitable for coring were encountered. A complementary surface 
wave dataset was collected by UNLV Applied Geophysics Center (not part of this project; 
discussed below under Synergistic Activities). 

 
Task 4: Data processing: Process seismic datasets to generate profiles of shear and compression 

wave velocities with depth as well as Poisson’s ratio. Include uncertainty measures. As 
planned except that the analysis did not delve as deeply into uncertainty measures as 
anticipated because scatter in the data was so large that correlations were not valuable as 
predictors.  

 
Task 5: Synthesis: Compile test results to compose correlations. Check the database for accuracy 

and quality. Compare findings with statewide and broader databases. Consider both coupled 
and independent correlations of VS and N. Investigate the impact of uncertainty in the 
correlations on deep foundation capacity. Investigate the impact of uncertainty in the 
correlations on surface seismic response spectra, for example using the program SHAKE, for 
representative soil sites in Las Vegas and Reno. Use relevant seismic excitations to compute 
soil amplification, strain level, and liquefaction potential. Compare the seismic design criteria 
obtained by site-specific analysis against results obtained using code-based expedient 
methods. The compilations were completed as planned. Local results were compared against 
local and global compilations. Local results demonstrated a distinct bias toward higher 
velocities/ greater stiffness/strength. Still, correlations were too poor to be of much use. 
(Scatter was tremendous.) Earthquake aspects were not addressed. 

 
Task 6: Report: Compose a technical report documenting research findings, recommending 

correlations for adoption in design, and stating implications for deep foundation design and 
seismic design. This report encompasses by reference a thesis addressing the field tests and 
correlations work, and includes (Appendix A) a subordinate report addressing analyses of 
effects of caliche on axial capacity of drilled shafts. 

 
 
SYNERGISTIC ACTIVITIES 
With help from the Applied Geophysics Center, UNLV graduate student Ms. Yasaman 
Badrzadeh collected seismic data along a long linear array at the US95/CC215 interchange site, 
not as part of this project. The source was an accelerated drop weight. The data underwent 
preliminary interpretation using the MASW method for fundamental-mode surface waves 
(Badrzadeh) and full waveform inversion (Professor Khiem Tran, Clarkson University). Plans to 
also interpret the data using seismic refraction tomography were not realized. Preliminary results 
were presented by Luke at IFCEE (Samuel et al. 2015). 
 
Undergraduate student Ms. Jesse Basinski won an NDOT summer research award and used it to 
add a large and high quality dataset to the regional VS/N/sediment class database (refer to 
Samuel thesis) – that of the High Roller observation wheel at Project Linq in Las Vegas. Mr. 
William Sublette, a new BSCE and starting graduate student, added those data to the overall 
correlation built by Ms. Rinu Samuel. This compilation is presented in this report. 
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RESEARCH PRODUCTS 
To date, the research has yielded the following written and oral outcomes. 

 A thesis by Ms. Rinu Samuel (Samuel, 2015) 
 A research report led by Prof. Siddharthan (Appendix A to this report), Samuel thesis 
 A conference paper and presentation (Samuel et al. 2015) 
 Graduate student posters by Ms. Samuel and by Ms. Yasaman Badrzadeh 
 This final report 

 
Future plans include one or more journal manuscripts, co-written by the authors of this report 
and their NDOT partners, for submission to Transportation Research Record.  
 
 
DISCUSSION 
A brief discussion of key findings follows. Further detail is contained in the research products 
listed above. 
 
The work in Rinu Samuel’s thesis (Samuel 2015) addresses most of the Tasks. From the 
Abstract: “… there is a need for investigating methods to assess the shear behavior of sediments 
that occur in the [Las Vegas Valley, LVV] in situ in working ranges of stress/strain, with the end 
goal of improving abilities to predict the capacity of drilled shafts in the LVV. To this end, 
global correlations of readily measured in situ tests – specifically, Standard Penetration Testing 
(SPT), shear wave velocity (VS) testing, and pressuremeter testing (PMT), with laboratory-
measured shear parameters of sediments are reviewed to evaluate their applicability in the LVV. 
Direct measurements of [VS] are conducted using downhole testing at a site in the LVV known 
to have cementation and dense gravels. Local LVV datasets of aforementioned in situ tests and 
laboratory tests used to determine shear strength parameters are obtained from local consultants 
and government entities and are analyzed to detect possible relationships between in situ tests 
and shear parameters (such as , cohesion (c), su) beneficial for deep foundation design. Despite 
the high sediment heterogeneity across the LVV, variations in testing procedures, and lack of 
laboratory data, results show that readily measured in situ test data can be valuable for deep 
foundation design in the LVV when complemented with each other and laboratory data. In the 
datasets analyzed, blow counts are highly variable. Some local data show weak trends of 
increasing  and c with increasing blow count. Comparisons of blow counts with VS did not 
yield any useful correlations. Neither seismic velocities nor N60 [blow count from SPT corrected 
for hammer efficiency] is more informative than the other, but when complemented with each 
other they provide valuable insight regarding stiffness and relative density of sediments and their 
variability with respect to depth. Most correlations from other sites considered in this study are 
not representative of the shear [characteristics] of the local sediments that were studied. Local 
VS profiles correspond better with local reference profiles than with others studied.” 
 
Correlations research 
 
Samuel (2015) noted that blow count data are not informative in cemented sediments once the 
sampler meets “refusal”. Because the stiff, cemented layers are not expected to fail under service 
loading, their stiffness at small strains will govern design. For these reasons, we looked to using 
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Following this unsatisfying literature search, we turned attention to the PMT. That method too is 
problematic in the LVV’s challenging sediments. Reporting on their PMT work for Project Neon 
in LVV, In Situ Engineering (2012) reported poor correlation of PMT results with soil type. 
Citing huge material variability, they noted “no discernible trend for modulus values” with 
respect to depth. “Sampling was performed before and after each test pocket to help clarify the 
material being tested. Unfortunately, these samples do not accurately represent the material being 
tested. Dealing with materials that are continuous or have small variation between tests within a 
test pocket, a lower bound modulus trend can be demonstrated by plotting the modulus values 
with respect to depth. However, this is not the case on this site. The soil strength and stiffness is 
highly variable with depth which is evidenced by the large spread in values, even in closely 
matched pairs of testing.” (In Situ Engineering (2012), page 20.) 
 
Direct comparison testing 
 
Two direct-comparison tests were conducted at the CC215 / US95 interchange site in the LVV 
(Samuel et al. 2015; Samuel 2015). The logged sediment type, N60, compression wave velocity 
(VP) and VS from downhole testing, and VS from surface wave (MASW method) testing were 
observed and compared. Summary results from one of two drillholes (NDOT Test Shaft 2, 
Boring 3/3A) are shown in Fig. 2. A pattern of steadily increasing N60 with increasing depth, 
which would have implied a direct correspondence with overburden pressure, is absent. 
Resolution of VS is coarse compared to N60 data. A single, 14-m thick upper layer in the VS 
profile corresponds to strongly varying sediment types and N60 values. Below this depth, a sharp 
increase in VS corresponds to a thick layer of very dense clayey gravel with sand. The transition 
beneath to a thick layer of lean clay matches a sharp decrease in VS. N60 values are still quite 
variable in both of those layers (ranging from ~20 to 100-plus; see Samuel (2015) for the 
mechanism we used to characterize N60 values at “refusal”). There is a thin cemented layer 
beneath, indicated well by N60 but too deep to be resolved by the downhole testing.  
 
Poisson’s ratio values, derived from VP and VS, were reasonable. VP profiles indicated depth to 
moist soil, which was well above the depth to water surface in the borehole. The VS profiles are 
compared to two sets of representative profiles differentiated by soil type, one general and one 
local to the LVV (Fig. 3). The local set has consistently higher velocities than the general one. 
VS measured for the deep gravel layer fits the scatter from which the local representative profiles 
were created (Fig. 4; ref. Murvosh et al. 2013). The same is true for the MASW measurement in 
the underlying clay, while the downhole VS values are slightly beyond those bounds. 
 
Even for this one-on-one test, the correlation of VS to N60 was weak. According to our NDOT 
partners, the Osterberg cell (O-cell) drilled shaft test at this location demonstrated relatively 
weaker material in the upper ~10 m and intermediate strength at greater depth (Fig. 5). (More 
detail of the O-cell tests is given in Appendix A.) The weakness at shallow depths corresponds 
more strongly to the VS data than the N60, which demonstrated quite high values in the upper six 
meters. Conferring with our NDOT partners, we understand that the O-cell test results confirmed 
that a drilled shaft foundation design for this site that followed AASHTO in selecting soil 
parameters for the design that were based only on soil classification and standard penetration 
values from exploratory borings would have been overly conservative. The estimated cost 
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 In non-cemented layers, VS increases as N60, corrected for field procedures and 
overburden stress, increases. 

 Non-cemented dense gravel can exhibit stiffness greater than other non-cemented 
layers. 

 Cemented layers are less predictable than non-cemented layers in respect to N60 and 
VS. 

 In non-cemented layers, clay exhibits the lowest N60 and VS and sand exhibits higher 
N60 and VS.

 
The VS measurements in this dataset were made using the in-hole suspension method.  
 
This investigation/dataset demonstrates that if we limit scope to a single, fairly small site and 
carefully sort the data (cemented versus non-cemented, depth of burial), more useful correlations 
can be found.  
 
Graduate student Mr. Will Sublette, funded by this project, incorporated Basinski’s work into an 
overall plot from Samuel (2015) comparing VS to N or N60 (Fig. 6). The three curves on the plot 
that show VS values at 1200 m/s or greater are second-order polynomial fits to the regional 
dataset, and are distinguished further in the figure caption. The plot also includes the correlations 
from literature that were shown in Fig. 1. The plot demonstrates (1) large variability in the data; 
(2) higher values for LVV than for the global datasets; (3) the dataset is not yet large enough to 
represent conditions Valleywide (demonstrated by the significant effect that the additional 
Project Linq data holds on the overall correlation). Further, note that there are no VS values 
below ~150 m/s. This outcome is likely affected by the fact that many of the VS values used 
came from ReMi-type surface wave measurements collected mainly to determine 30-m depth 
averaged VS and so the reported velocities are heavily averaged. Also note that there are many N 
values at 100 or greater. (As explained in Samuel (2015), we chose to saturate the N scale at 100; 
all values measured or computed from refusal counts above that number are plotted at 100). We 
also computed the curve fits to the dataset without considering the N=100 data (not shown). 
Those curves also showed considerable differences when the Project Linq data were included. 
Samuel (2015) provides similar plots to Fig. 6 for N compared to for sandy soils and N 
compared to su for clayey soils. 

 
Samuel (2015) draws nine conclusions from her work, all of which are touched upon in this final 
report. The ninth, a key conclusion, is as follows: “Due to the heterogeneity of sediments, 
varying degrees of cementation, sampling difficulty, variability in volumes of sediments tested, 
and lack of standardization in testing in the LVV, joint sets of in situ and lab test results should 
be analyzed with careful consideration. Neither seismic velocities nor N60 is more informative 
than the other, but when complemented with each other [they] provide valuable insight regarding 
stiffness and relative density of sediments and their variability with respect to depth. Any test by 
itself may not be representative of the soils in the area, or may not be the best tool to understand 
the shear strength properties of the sediments in question. Therefore, the use of readily measured 
in situ test data is valuable for deep foundation design in the LVV as long as it is complemented 
with other data…. However, there are limitations associated with quantifying correlations of 
readily-measured in situ test data with shear behavior of sediments due to reasons such as high 
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 In the absence of in-place full scale load tests, considering shear wave velocity along 
with blow count and sediment lithology will help reduce uncertainty in deep foundation 
design. The three datasets do not always corroborate one another and therefore help to 
indicate level of confidence. Regarding shear wave velocity, results improve when it is 
measured locally (over small volumes that are more comparable to the volume of soil 
affected in a blow count) – in-hole measurements are preferable to surface-based 
measurements. Suspension logs are expected to be preferable to downhole measurements 
for the same reason; the Project Linq data appear to bear this out. 

 Axial capacity of drilled shaft foundations is indeed enhanced by presence of caliche 
layers. Thickness of the caliche layer is a key parameter, while depth is less important. 
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